The KATP channel Kir6.2 subunit content is higher in glycolytic than oxidative skeletal muscle fibers.

نویسندگان

  • Krystyna Banas
  • Charlene Clow
  • Bernard J Jasmin
  • Jean-Marc Renaud
چکیده

It has long been suggested that in skeletal muscle, the ATP-sensitive K(+) channel (K(ATP)) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of K(ATP) channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular K(ATP) channel content differs between muscles and fiber types. K(ATP) channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca(2+) channel is responsible for triggering Ca(2+) release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular K(ATP) channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of K(ATP) channels may be linked to how often muscles/fibers face metabolic stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ursolic acid induces myoglobin expression and skeletal muscle remodeling in mice

Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...

متن کامل

Treadmill running causes significant fiber damage in skeletal muscle of KATP channel-deficient mice.

Although it has been suggested that the ATP-sensitive K(+) (K(ATP)) channel protects muscle against function impairment, most studies have so far given little evidence for significant perturbation in the integrity and function of skeletal muscle fibers from inactive mice that lack K(ATP) channel activity in their cell membrane. The objective was, therefore, to test the hypothesis that K(ATP) ch...

متن کامل

KATP Channel Mutations and Neonatal Diabetes

Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological functions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the KATP channel regulates the secretion of insulin by sensing a ...

متن کامل

Octameric Stoichiometry of the KATP Channel Complex

ATP-sensitive potassium (KATP) channels link cellular metabolism to electrical activity in nerve, muscle, and endocrine tissues. They are formed as a functional complex of two unrelated subunits-a member of the Kir inward rectifier potassium channel family, and a sulfonylurea receptor (SUR), a member of the ATP-binding cassette transporter family, which includes cystic fibrosis transmembrane co...

متن کامل

Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels.

ATP-sensitive inwardly rectifying potassium channels are expressed in a variety of tissues, including heart, skeletal, and smooth muscle, and pancreatic beta-cells. Physiological and pharmacological studies suggest the presence of distinct KATP channels in these tissues. Recently, the KATP channel of beta-cells has been reconstituted in functional form by coexpression of SUR, the sulfonylurea-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 301 4  شماره 

صفحات  -

تاریخ انتشار 2011